ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 178 179 180 181 182 183 184 >> [Всего задач: 1221]      



Задача 107858

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Подсчет двумя способами ]
[ Ортогональная (прямоугольная) проекция ]
[ Разрезания на параллелограммы ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.

Прислать комментарий     Решение

Задача 109182

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11

Найти такое трёхзначное число A², являющееся точным квадратом, что произведение его цифр равно  A – 1.

Прислать комментарий     Решение

Задача 109543

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Исследование квадратного трехчлена ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любых действительных чисел a и b справедливо неравенство  a² + ab + b² ≥ 3(a + b – 1).

Прислать комментарий     Решение

Задача 109544

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 11 ]
[ Метод спуска ]
Сложность: 3+
Классы: 7,8,9

Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.

Прислать комментарий     Решение

Задача 110179

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Синусы и косинусы углов треугольника ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11

Косинусы углов одного треугольника соответственно равны синусам углов другого треугольника.
Найдите наибольший из шести углов этих треугольников.

Прислать комментарий     Решение

Страница: << 178 179 180 181 182 183 184 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .