ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон.

   Решение

Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 538]      



Задача 116893

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Четырехугольная пирамида ]
[ Четность и нечетность ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Какое наибольшее количество треугольных граней может иметь пятигранник?

Прислать комментарий     Решение

Задача 87467

Темы:   [ Цилиндр ]
[ Пирамида (прочее) ]
Сложность: 3+
Классы: 10,11


Около правильного тетраэдра описан цилиндр так, что два противоположных ребра тетраэдра являются диаметрами оснований цилиндра. Найдите отношение объема цилиндра к объему тетраэдра.

Прислать комментарий     Решение


Задача 107766

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Усеченная пирамида ]
[ Многогранники и многоугольники (прочее) ]
Сложность: 3+
Классы: 10,11

Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон.
Прислать комментарий     Решение


Задача 111263

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 10,11

Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.
Прислать комментарий     Решение


Задача 64407

Темы:   [ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 4-

В пространстве отмечены пять точек. Известно, что это центры сфер, четыре из которых попарно касаются извне и касаются изнутри пятой сферы. При этом невозможно определить, какая точка является центром объемлющей сферы. Найдите отношение радиусов наибольшей и наименьшей сферы.

Прислать комментарий     Решение

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 538]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .