ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что существует бесконечно много таких составных n, что 3n–1 – 2n–1 кратно n. Решение |
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 965]
Докажите, что для любого натурального числа n > 10000 найдётся такое натуральное число m, представимое в виде суммы двух квадратов, что
Даны такие действительные числа a1 ≤ a2 ≤ a3 и b1 ≤ b2 ≤ b3, что a1 + a2 + a3 = b1 + b2 + b3, a1a2 + a2a3 + a1a3 = b1b2 + b2b3 + b1b3.
Докажите, что если a1 ≤ b1, то a3 ≤ b3.
Получите формулу для корня уравнения x³ + px + q = 0:
Доказать, что существует бесконечно много таких составных n, что 3n–1 – 2n–1 кратно n.
Изначально на доске были написаны одночленs 1, x, x², ..., xn. Договорившись заранее, k мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через m минут на доске были написаны, среди прочих, многочлены S1 = 1 + x, S2 = 1 + x + x², S3 = 1 + x + x² + x3, ..., Sn = 1 + x + x² + ... + xn. Докажите, что
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 965] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|