Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Дана прямая и две точки A и B, лежащие по одну сторону от этой прямой на равном расстоянии от неё.
Как с помощью циркуля и линейки найти на прямой такую точку C, что произведение  AC·BC  будет наименьшим?

Вниз   Решение


Точка O – центр окружности, вписанной в треугольник ABC. На сторонах AC и BC выбрали соответственно точки M и K так, что  BK·AB = BO²  и  AM·AB = AO².  Докажите, что точки M, O и K лежат на одной прямой.

ВверхВниз   Решение


Точки K и L на сторонах соответственно AB и AC остроугольного треугольника ABC таковы, что KL || BC ; M – точка пересечения перпендикуляров, восставленных в точках K и L к отрезкам AB и AC . Докажите, что точки A , M и центр O описанной окружности треугольника ABC лежат на одной прямой.

ВверхВниз   Решение


Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.
Чему равна сторона квадрата, если площадь прямоугольника 54 м²?

ВверхВниз   Решение


В выборах в 100-местный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов. После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т. п. не было) и каждая партия получила целое число мест. При этом Партия любителей математики набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

ВверхВниз   Решение


Точка M расположена на стороне AB параллелограмма ABCD, причём  BM : MA = 1 : 2.  Отрезки DM и AC пересекаются в точке P. Известно, что площадь параллелограмма ABCD равна 1. Найдите площадь четырёхугольника BCPM.

ВверхВниз   Решение


Вдоль дорожки между домиками Незнайки и Синеглазки росли в ряд цветы: 15 пионов и 15 тюльпанов вперемешку. Отправившись из дома в гости к Незнайке, Синеглазка поливала все цветы подряд. После 10-го тюльпана вода закончилась, и 10 цветов остались не политыми. Назавтра, отправившись из дома в гости к Синеглазке, Незнайка собирал для неё все цветы подряд. Сорвав 6-й тюльпан, он решил, что для букета достаточно. Сколько цветов осталось расти вдоль дорожки?

ВверхВниз   Решение


Будильник спешит на 9 минут в сутки. Ложась спать в 22.00 , на нем установили точное время. На какое время надо завести звонок, чтобы будильник зазвенел ровно в 6.00 ? Ответ объясните.

ВверхВниз   Решение


Коля и его сестра Маша пошли в гости. Пройдя четверть пути, Коля вспомнил, что они забыли дома подарок и повернул обратно, а Маша пошла дальше. Маша пришла в гости через 20 минут после выхода из дома. На сколько минут позже пришёл в гости Коля, если известно, что они все время шли с одинаковыми скоростями?

ВверхВниз   Решение


Петя и Вася участвовали в велогонке. Все участники стартовали одновременно и показали на финише различное время. Петя финишировал сразу после Васи и оказался на десятом месте. Сколько человек участвовало в гонке, если Вася был пятнадцатым с конца?

ВверхВниз   Решение


На стороне AB четырёхугольника ABCD взяты точки A1 и B1, а на стороне CD – точки C1 и D1, причём  AA1 = BB1 = pAB  и  CC1 = DD1 = pCD,  где
p < ½.  Докажите, что  SA1B1C1D1 = (1 – 2p)SABCD.

ВверхВниз   Решение


Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.

ВверхВниз   Решение


Докажите, что три прямые, проведённые через середины сторон треугольника параллельно биссектрисам противолежащих углов, пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 225]      



Задача 53773

Тема:   [ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 8,9

На сторонах AB и AC треугольника ABC взяты соответственно точки M и N, причём  MN || BC.  На отрезке MN взята точка P, причём  MP = 1/3 MN.  Прямая AP пересекает сторону BC в точке Q. Докажите, что  BQ = 1/3 BC.

Прислать комментарий     Решение

Задача 108001

Темы:   [ Гомотетия помогает решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников  ABM, BCM, CDM и DAM образуют квадрат.

Прислать комментарий     Решение

Задача 108004

Темы:   [ Гомотетия помогает решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Докажите, что три прямые, проведённые через середины сторон треугольника параллельно биссектрисам противолежащих углов, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108664

Темы:   [ Гомотетия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Точки K и L на сторонах соответственно AB и AC остроугольного треугольника ABC таковы, что KL || BC ; M – точка пересечения перпендикуляров, восставленных в точках K и L к отрезкам AB и AC . Докажите, что точки A , M и центр O описанной окружности треугольника ABC лежат на одной прямой.
Прислать комментарий     Решение


Задача 55761

Темы:   [ Гомотетия помогает решить задачу ]
[ Свойства симметрии и центра симметрии ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 225]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .