ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC через O, I обозначены центры описанной и вписанной окружностей соответственно. Вневписанная окружность ωa касается продолжений сторон AB и AC в точках K и M соответственно, а стороны BC – в точке N. Известно, что середина P отрезка KM лежит на описанной окружности треугольника ABC. Докажите, что точки O, N и I лежат на одной прямой.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 157]      



Задача 108042

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ромбы. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Автор: Фомин Д.

Четырёхугольник ABCD – ромб. На стороне BC взята точка P. Через точки A, B и P проведена окружность, которая пересекается с прямой BD ещё раз в точке Q. Через точки C, P и Q проведена окружность, которая пересекается с BD ещё раз в точке R. Докажите, что точки A, R и P лежат на одной прямой.

Прислать комментарий     Решение

Задача 115292

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4-
Классы: 8,9

Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

Прислать комментарий     Решение

Задача 115692

Темы:   [ Три точки, лежащие на одной прямой ]
[ Пересекающиеся окружности ]
[ Вписанные четырехугольники ]
Сложность: 4-
Классы: 8,9

Две окружности с центрами O1 и O2 пересекаются в точках A и B. Окружность, проходящая через точки O1, B и O2 пересекает вторую окружность также и в точке P. Докажите, что точки O1, A и P лежат на одной прямой.

Прислать комментарий     Решение

Задача 108127

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

В треугольнике ABC через O, I обозначены центры описанной и вписанной окружностей соответственно. Вневписанная окружность ωa касается продолжений сторон AB и AC в точках K и M соответственно, а стороны BC – в точке N. Известно, что середина P отрезка KM лежит на описанной окружности треугольника ABC. Докажите, что точки O, N и I лежат на одной прямой.

Прислать комментарий     Решение

Задача 108945

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вневписанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Две касательные, проведенные из одной точки ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Одна из вневписанных окружностей треугольника ABC касается стороны AB и продолжений сторон CA и CB в точках C1, B1 и A1 соответственно. Другая вневписанная окружность касается стороны AC и продолжений сторон BA и BC в точках B2, C2 и A2 соответственно. Прямые A1B1 и A2B2 пересекаются в точке P, прямые A1C1 и A2C2 – в точке Q. Докажите, что точки A, P и Q лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .