ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC. Решение |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152]
Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC.
Крестьянин, подойдя к развилке двух дорог, расходящихся под углом 60°, спросил: "Как пройти в село NN?" Ему ответили: "Иди по левой дороге до деревни N – это в 8 верстах отсюда, – там увидишь, что направо под прямым углом отходит большая ровная дорога – это как раз дорога в NN. А можешь идти другим путём: сейчас по правой дороге; как выйдешь к железной дороге, – значит, половину пути прошёл; тут поверни налево и иди прямо по шпалам до самого NN". – "Ну, а какой путь короче-то будет?" – "Да всё равно, что так, что этак, никакой разницы". И пошёл крестьянин по правой дороге.
На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной
линии, он пробежал 30 километров.
Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке C пересекается с прямой, делящей пополам угол B треугольника, в точке K, причём угол BKC равен половине разности утроенного угла A и угла C треугольника. Сумма сторон AC и AB равна 2 + , а сумма расстояний от точки O до сторон AC и AB равна 2. Найдите радиус окружности.
Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке C пересекается с прямой, делящей пополам угол B треугольника, в точке K, причём угол BKC равен половине угла C треугольника. Сторона AB на длиннее стороны AC, а расстояние от точки O до стороны AC на 1 больше расстояния от точки O до стороны AB. Найдите радиус окружности.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 152] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|