Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 153]
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB.
|
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли треугольная пирамида, среди шести рёбер которой:
а) два ребра по длине меньше 1 см, а остальные четыре – больше 1 км?
б) четыре ребра по длине меньше 1 см, а остальные два – больше 1 км?
a и b – две данные стороны треугольника.
Как подобрать третью сторону c так, чтобы точки касания вписанной и вневписанной окружностей с этой стороной делили её на три равных отрезка?
При каких a и b такая сторона существует?
(Рассматривается вневписанная окружность, касающаяся стороны c и продолжений сторон a и b.)
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Диагонали выпуклого четырёхугольника ABCD перпендикулярны и
пересекаются в точке O. Известно, что сумма радиусов окружностей, вписанных в треугольники AOB и COD, равна сумме радиусов окружностей, вписанных в треугольники BOC и DOA. Докажите, что
а) четырёхугольник ABCD – описанный;
б) четырёхугольник ABCD симметричен относительно одной из своих диагоналей.
В треугольнике ABC высоты или их продолжения пересекаются в точке H, а R – радиус его описанной окружности.
Докажите, что если ∠A ≤ ∠B ≤ ∠C, то AH + BH ≥ 2R.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 153]