ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 153]      



Задача 65369

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Неравенство треугольника (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Автор: Мухин Д.Г.

Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что  2MN < AB.

Прислать комментарий     Решение

Задача 66283

Темы:   [ Наглядная геометрия в пространстве ]
[ Тетраэдр (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Существует ли треугольная пирамида, среди шести рёбер которой:
  а) два ребра по длине меньше 1 см, а остальные четыре – больше 1 км?
  б) четыре ребра по длине меньше 1 см, а остальные два – больше 1 км?

Прислать комментарий     Решение

Задача 108089

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

a и b – две данные стороны треугольника.
  Как подобрать третью сторону c так, чтобы точки касания вписанной и вневписанной окружностей с этой стороной делили её на три равных отрезка?
  При каких a и b такая сторона существует?
(Рассматривается вневписанная окружность, касающаяся стороны c и продолжений сторон a и b.)

Прислать комментарий     Решение

Задача 116034

Темы:   [ Описанные четырехугольники ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенство треугольника (прочее) ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 9,10,11

Диагонали выпуклого четырёхугольника ABCD перпендикулярны и пересекаются в точке O. Известно, что сумма радиусов окружностей, вписанных в треугольники AOB и COD, равна сумме радиусов окружностей, вписанных в треугольники BOC и DOA. Докажите, что
  а) четырёхугольник ABCD – описанный;
  б) четырёхугольник ABCD симметричен относительно одной из своих диагоналей.

Прислать комментарий     Решение

Задача 116698

Темы:   [ Ортоцентр и ортотреугольник ]
[ Неравенства для элементов треугольника (прочее) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 11

В треугольнике ABC высоты или их продолжения пересекаются в точке H, а R – радиус его описанной окружности.
Докажите, что если  ∠A ≤ ∠B ≤ ∠C,  то  AH + BH ≥ 2R.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 153]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .