ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Сонкин М.

Пусть окружность, вписанная в треугольник ABC , касается его сторон AB , BC и AC в точках K , L и M соответственно. К окружностям, вписанным в треугольники BKL , CLM и AKM проведены попарно общие внешние касательные, отличные от сторон треугольника ABC . Докажите, что эти касательные пересекаются в одной точке.

   Решение

Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 499]      



Задача 52852

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

Из некоторой точки окружности, описанной около равностороннего треугольника ABC, проведены прямые, параллельные BC, CA и AB и пересекающие прямые CA, AB и BC в точках M, N и Q соответственно. Докажите, что точки M, N и Q лежат на одной прямой.

Прислать комментарий     Решение


Задача 109578

Темы:   [ Правильная пирамида ]
[ Проектирование помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема о трех перпендикулярах ]
Сложность: 5-
Классы: 10,11

На боковых ребрах SA , SB и SC правильной треугольной пирамиды SABC взяты соответственно точки A1 , B1 и C1 так, что плоскости A1B1C1 и ABC параллельны. Пусть O – центр сферы, проходящей через точки S , A , B и C1 . Докажите, что прямая SO перпендикулярна плоскости A1B1C .
Прислать комментарий     Решение


Задача 115448

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 5-
Классы: 9,10,11




Четырёхугольник ABCD вписан в окружность с диаметром AD ; O  — точка пересечения его диагоналей AC и BD является центром другой окружности, касающейся стороны BC . Из вершин B и С проведены касательные ко второй окружности, пересекающиеся в точке T . Докажите, что точка T лежит на отрезке AD .
Прислать комментарий     Решение

Задача 108156

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса делит дугу пополам ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Общая касательная к двум окружностям ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 5+
Классы: 8,9,10

Автор: Сонкин М.

Пусть окружность, вписанная в треугольник ABC , касается его сторон AB , BC и AC в точках K , L и M соответственно. К окружностям, вписанным в треугольники BKL , CLM и AKM проведены попарно общие внешние касательные, отличные от сторон треугольника ABC . Докажите, что эти касательные пересекаются в одной точке.
Прислать комментарий     Решение


Задача 64974

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 9,10,11

Высоты AA1 и BB1 треугольника ABC пересекаются в точке H. Прямая CH пересекает полуокружность с диаметром AB, проходящую через точки A1 и B1, в точке D. Отрезки AD и BB1 пересекаются в точке M, BD и AA1 – в точке N. Докажите, что описанные окружности треугольников B1DM и A1DN касаются.

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .