ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В средней клетке полоски 1×2005 стоит фишка. Два игрока по очереди сдвигают ее: сначала первый игрок передвигает фишку на одну клетку в любую сторону, затем второй передвигает ее на 2 клетки, 1-й – на 4 клетки, 2-й – на 8 и т.д. (k-й сдвиг происходит на 2k-1 клеток). Тот, кто не может сделать очередной ход, проигрывает. Кто может выиграть независимо от игры соперника? В Заитильщине 57 деревень, между некоторыми из которых проложены дороги. Известно, что из каждой деревни можно попасть в любую другую, притом по единственному маршруту. Окружность, вписанная в треугольник ABC касается его сторон AB , BC и CA в точках M , N и K соответственно. Прямая, проходящая через вершину A и параллельная NK , пересекает прямую MN в точке D . Прямая, проходящая через вершину A и параллельная MN , пересекает прямую NK в точке E . Докажите, что прямая DE содержит среднюю линию треугольника ABC . |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 772]
Окружность, вписанная в треугольник ABC касается его сторон AB , BC и CA в точках M , N и K соответственно. Прямая, проходящая через вершину A и параллельная NK , пересекает прямую MN в точке D . Прямая, проходящая через вершину A и параллельная MN , пересекает прямую NK в точке E . Докажите, что прямая DE содержит среднюю линию треугольника ABC .
Две окружности касаются друг друга. В большую из них вписан равносторонний треугольник, из вершин которого проведены касательные к меньшей. Докажите, что длина одной из этих касательных равна сумме длин двух других.
Проведена окружность S с центром в вершине C равнобедренного треугольника ABC ( AC=BC ). Радиус окружности меньше AC . Найдите на этой окружности такую точку P , чтобы касательная к окружности, проведённая в этой точке, делила пополам угол APB .
Пусть S1 и S2 – две окружности, лежащие одна вне другой. Общая внешняя касательная касается их в точках A и B . Окружность S3 проходит через точки A и B и вторично пересекает окружности S1 и S2 в точках C и D соответственно; K – точка пересечения прямых, касающихся окружностей S1 и S2 соответственно в точках C и D . Докажите, что KC=KD .
MA и MB – касательные к окружности O,; C – точка внутри окружности, лежащая на дуге AB с центром в точке M . Доказать, что отличные от A и B точки пересечения прямых AC и BC с окружностью O лежат на противоположных концах одного диаметра.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке