ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фомин Д.

Известно, что в трапецию можно вписать окружность.
Докажите, что окружности, построенные на боковых сторонах трапеции как на диаметрах, касаются друг друга.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 107]      



Задача 108447

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Касающиеся окружности ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

Известно, что в трапецию можно вписать окружность.
Докажите, что окружности, построенные на боковых сторонах трапеции как на диаметрах, касаются друг друга.

Прислать комментарий     Решение

Задача 115514

Темы:   [ Вспомогательные подобные треугольники ]
[ Две пары подобных треугольников ]
[ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Внутри выпуклого четырёхугольника ABCD взята такая точка P, что  ∠PBA = ∠PCD = 90°.  Точка M – середина стороны AD, причём  BM = CM.
Докажите, что  ∠PAB = ∠PDC.

Прислать комментарий     Решение

Задача 36995

Темы:   [ Медиана делит площадь пополам ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 9,10

В выпуклом четырехугольнике АВСD точка Е — середина CD, F — середина АD, K — точка пересечения АС и ВЕ. Докажите, что площадь треугольника BKF в два раза меньше площади треугольника АВС.

Прислать комментарий     Решение

Задача 78262

Темы:   [ Общая касательная к двум окружностям ]
[ Описанные четырехугольники ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 9,10

С центрами в вершинах прямоугольника построены четыре окружности с радиусами r1, r2, r3, r4, причём r1 + r3 = r2 + r4 < d; d — диагональ прямоугольника. Проводятся две пары внешних касательных к окружностям 1, 3 и 2, 4. Доказать, что в четырёхугольник, образованный этими четырьмя прямыми, можно вписать окружность.
Прислать комментарий     Решение


Задача 54465

Темы:   [ Теорема косинусов ]
[ Правильный (равносторонний) треугольник ]
[ Средняя линия трапеции ]
[ Площадь трапеции ]
Сложность: 4-
Классы: 8,9

В правильном треугольнике ABC со стороной a точки E и D являются серединами сторон BC и AC соответственно. Точка F лежит на отрезке DC, отрезки BF и DE пересекаются в точке M. Найдите ME, если известно, что площадь четырёхугольника ABMD составляет $ {\frac{5}{8}}$ площади треугольника ABC.

Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .