ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Кристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка. В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна a, Дан треугольник ABC, в котором AB > BC. Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный. Найдите все такие нечётные натуральные n > 1, что для любых взаимно простых делителей a и b числа n число a + b – 1 также является делителем n. В выпуклом четырёхугольнике ABCD AB = BC. Лучи BA и CD пересекаются в точке E, а лучи AD и BC – в точке F. Известно также, что BE = BF и Окружности $\alpha$, $\beta$, $\gamma$ касаются друг друга внешним образом и касаются изнутри окружности $\Omega$ в точках $A_1$, $B_1$, $C_1$ соответственно. Общая внутренняя касательная к $\alpha$ и $\beta$ пересекает не содержащую $C_1$ дугу $A_1B_1$ в точке $C_2$. Точки $A_2$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке. Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечётные.
В треугольнике ABC прямые, содержащие высоты AP, CR, и BQ (точки
P, R и Q лежат на прямых, содержащих соответствующие стороны треугольника ABC),
пересекаются в точке O. Найдите площади треугольников ABC и POC, если известно, что
RP параллельно AC, AC = 4 и
sin
|
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1358]
В остроугольном треугольнике АВС биссектриса AN, высота BH и прямая, перпендикулярная стороне АВ и проходящая через ее середину, пересекаются в одной точке. Найдите угол ВАС.
В треугольнике ABC прямые, содержащие высоты AP, CR, и BQ (точки
P, R и Q лежат на прямых, содержащих соответствующие стороны треугольника ABC),
пересекаются в точке O. Найдите площади треугольников ABC и POC, если известно, что
RP параллельно AC, AC = 4 и
sin
В трапеции ABCD диагонали AC и BD пересекаются в точке O и перпендикулярны
боковым сторонам. Продолжения боковых сторон пересекаются в точке E.
Найдите площади треугольников EAD и COD, если известно, что
основание AD = 6 и
sin
Площадь прямоугольного треугольника ABC (
Дан шестиугольник ABCDEF, в котором AB = BC, CD = DE, EF = FA, а углы A и C — прямые. Докажите, что прямые FD и BE перпендикулярны.
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1358]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке