ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

Вниз   Решение


Автор: Ботин Д.А.

Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?

ВверхВниз   Решение


ABC – равнобедренный треугольник с основанием AC, CD – биссектриса угла C,  ∠ADC = 150°.  Найдите ∠B.

ВверхВниз   Решение


В окружности радиуса R = 4 проведены хорда AB и диаметр AK, образующий с хордой угол $ {\frac{\pi}{8}}$. В точке B проведена касательная к окружности, пересекающая продолжение диаметра AK в точке C. Найдите медиану AM треугольника ABC.

ВверхВниз   Решение


Периметр выпуклого четырёхугольника равен 4. Докажите, что его площадь не превосходит 1.

ВверхВниз   Решение


Между девятью планетами Солнечной системы введено космическое сообщение. Ракеты летают по следующим маршрутам: Земля – Меркурий, Плутон – Венера, Земля – Плутон, Плутон – Меркурий, Меркурий – Венера, Уран – Нептун, Нептун – Сатурн, Сатурн – Юпитер, Юпитер – Марс и Марс – Уран. Можно ли добраться с Земли до Марса?

ВверхВниз   Решение


Решите уравнение:

ВверхВниз   Решение


Автор: Фольклор

В треугольнике ABC медиана, проведённая из вершины A к стороне BC, в четыре раза меньше стороны AB и образует с ней угол 60°. Найдите угол А.

ВверхВниз   Решение


Пусть A – некоторая точка пространства, B – ортогональная проекция точки A на плоскость α , l – некоторая прямая этой плоскости. Докажите, что ортогональные проекции точек A и B на эту прямую совпадают.

ВверхВниз   Решение


В треугольник ABC вписана окружность, касающаяся стороны AB в точке D и стороны BC в точке E . Найдите углы треугольника, если = и = .

ВверхВниз   Решение


Докажите, что уравнение прямой, проходящей через точки M0(x0;y0) и M1(x1;y1) ( x1$ \ne$x0, y1$ \ne$y0), имеет вид

$\displaystyle {\frac{y-y_{0}}{y_{1}-y_{0}}}$ = $\displaystyle {\frac{x-x_{0}}{x_{1}-x_{0}}}$.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 113]      



Задача 102722

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3
Классы: 8,9

Найдите радиус и координаты центра окружности, заданной уравнением

                               а) (x - 3) 2 + (y + 2)2 = 16;

                               б) x2 + y2 - 2(x - 3y) - 15 = 0;

                               в) x2 + y2 = x + y + $ {\frac{1}{2}}$.

Прислать комментарий     Решение


Задача 108532

Темы:   [ Метод координат на плоскости ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Даны точки A(x1, y1) и B(x2, y2). Докажите, что

AB = $\displaystyle \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}}$.

Прислать комментарий     Решение


Задача 108537

Тема:   [ Метод координат на плоскости ]
Сложность: 3
Классы: 8,9

Докажите, что уравнение прямой, проходящей через точки M0(x0;y0) и M1(x1;y1) ( x1$ \ne$x0, y1$ \ne$y0), имеет вид

$\displaystyle {\frac{y-y_{0}}{y_{1}-y_{0}}}$ = $\displaystyle {\frac{x-x_{0}}{x_{1}-x_{0}}}$.

Прислать комментарий     Решение


Задача 108540

Темы:   [ Метод координат на плоскости ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9,10

Докажите, что прямая 3x - 4y + 25 = 0 касается окружности x2 + y2 = 25 и найдите координаты точки касания.

Прислать комментарий     Решение


Задача 108541

Темы:   [ Метод координат на плоскости ]
[ Окружность, вписанная в угол ]
Сложность: 3
Классы: 8,9

Составьте уравнение окружности, касающейся осей координат и проходящей через точку A(2;1).

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .