ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол равный 45o . Найдите объём пирамиды.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 157]      



Задача 108759

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 108767

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол 45o . Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 108768

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол равный 45o . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 108778

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 8,9

Высота правильной шестиугольной пирамиды равна стороне основания. Найдите угол бокового ребра с плоскостью основания.
Прислать комментарий     Решение


Задача 108785

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 2
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите высоту пирамиды.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .