ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите угол между прямой MN и плоскостью NKL . Составьте параметрические уравнения прямой пересечения плоскостей 2x - y - 3z + 5 = 0 и x + y - 2 = 0 . Сторона основания и высота правильной шестиугольной пирамиды пирамиды равны a . Найдите радиус сферы, вписанной в пирамиду. Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды. Пусть x1 < x2 < ... < xn – действительные числа. Постройте многочлены f1(x), f2(x), ..., fn(x) степени n – 1, которые удовлетворяют условиям fi(xi) = 1 и fi(xj) = 0 при i ≠ j (i, j = 1, 2, ..., n). Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) \, dx.$$ Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел: X [p+1]< X [p+2]>X [p+3]<...> X[p+k]. Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.
Сторона основания правильной треугольной призмы ABCA1B1C1
равна 4, а боковое ребро равно 3. На ребре BB1 взята точка F , а на
ребре CC1 – точка G так, что B1F=1 , CG= Задан числовой массив А [1:m]. Сосчитать и напечатать, сколько различных чисел в этом массиве. Например, в массиве 5, 7, 5 различных чисел два (5 и 7). Даны точки A(-3;0;1) и D(1;3;2) . Составьте параметрические уравнения прямой AD . Сторона основания правильной треугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус сферы, вписанной в пирамиду. |
Страница: 1 2 3 4 5 >> [Всего задач: 22]
AB и A1B1 — два скрещивающихся отрезка. O и O1 — соответственно их середины. Докажите, что отрезок OO1 меньше полусуммы отрезков AA1 и BB1.
Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите радиус сферы, вписанной в пирамиду.
Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол 45o . Найдите радиус сферы, вписанной в пирамиду.
Сторона основания и высота правильной шестиугольной пирамиды пирамиды равны a . Найдите радиус сферы, вписанной в пирамиду.
Сторона основания правильной треугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус сферы, вписанной в пирамиду.
Страница: 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке