ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству P² + Q² = R². Докажите, что все корни одного из многочленов третьей степени – действительные. Докажите, что в любой бесконечной десятичной дроби можно так переставить цифры, что полученная дробь станет рациональным числом. Докажите, что на окружности с центром в точке Существуют ли 10 таких различных целых чисел, что все суммы, составленные из девяти из них – точные квадраты? Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число. У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой? Докажите, что для любого натурального числа N найдутся такие две пары натуральных чисел, что суммы в парах одинаковы, а произведения отличаются ровно в N раз. Определите, с какой стороны расположен руль у изображенного на рисунке автомобиля. Приведённые квадратные трёхчлены f(x) и g(x) таковы, что уравнения f(g(x)) = 0 и g(f(x)) = 0 не имеют вещественных корней. Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.
Даны точки A(0;0), B(- 2;1), C(3;3), D(2; - 1) и окружность (x - 1)2 + (y + 3)2 = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности.
Точка D – середина основания AC равнобедренного треугольника ABC . Точка E – основание перпендикуляра, опущенного из точки D на сторону BC . Отрезки AE и BD пересекаются в точке F . Установите, какой из отрезков BF и BE длиннее. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 122]
Вписанная окружность касается сторон AC и BC треугольника ABC в точках B1 и A1 соответственно. Докажите, что если AC > BC, то AA1 > BB1.
Существует ли выпуклый пятиугольник (все углы меньше 180o ) ABCDE , у которого все углы ABD , BCE , CDA , DEB и EAC – тупые?
Докажите, что одна из сторон выпуклого четырёхугольника
с диагоналями a и b не превосходит
Точка D – середина основания AC равнобедренного треугольника ABC . Точка E – основание перпендикуляра, опущенного из точки D на сторону BC . Отрезки AE и BD пересекаются в точке F . Установите, какой из отрезков BF и BE длиннее.
У двух треугольников равны наибольшие стороны и равны наименьшие углы. Строится новый треугольник со сторонами, равными суммам соответствующих сторон данных треугольников (складываются наибольшие стороны двух треугольников, средние по длине стороны и наименьшие стороны). Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 122]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке