Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую — в точках C и D. Докажите, что AB| CD.

Вниз   Решение


Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o .

ВверхВниз   Решение


Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .

ВверхВниз   Решение


Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB.

ВверхВниз   Решение


На доске написаны в порядке возрастания два натуральных числа x и y  (x ≤ y).  Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и  y – x,  записывая их в порядке возрастания. С новыми числами на доске он проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

ВверхВниз   Решение


Автор: Храбров А.

Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число;  an+1 = ⅕ an,  если an делится на 5;
an+1 = [ an],  если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.

ВверхВниз   Решение


Докажите, что через две параллельные прямые можно провести единственную плоскость.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 65]      



Задача 109049

Тема:   [ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Докажите, что через две параллельные прямые можно провести единственную плоскость.
Прислать комментарий     Решение


Задача 109050

Тема:   [ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Докажите, что в пространстве через точку, не лежащую на данной прямой, можно провести единственную прямую, параллельную данной.
Прислать комментарий     Решение


Задача 109052

Тема:   [ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны.
Прислать комментарий     Решение


Задача 109053

Тема:   [ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Если две параллельные плоскости пересечь третьей, то прямые пересечения будут параллельны.
Прислать комментарий     Решение


Задача 109054

Тема:   [ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Докажите, что каждая прямая, лежащая в одной из двух параллельных плоскостей, параллельна другой плоскости.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .