ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сторону АВ треугольника АВС продолжили за вершину В и выбрали на луче АВ точку А1 так, что точка В – середина отрезка АА1 . Сторону ВС продолжили за вершину С и отметили на продолжении точку В1 так, что С – середина ВВ1 . Аналогично, продолжили сторону СА за вершину А и отметили на продолжении точку С1 так, что А – середина СС1 . Найдите площадь треугольника А1В1С1 , если площадь треугольника АВС равна1. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]
Докажите, что медианы разбивают треугольник на
шесть равновеликих треугольников.
Докажите, что медиана разбивает треугольник на два равновеликих треугольника.
Сторону АВ треугольника АВС продолжили за вершину В и выбрали на луче АВ точку А1 так, что точка В – середина отрезка АА1 . Сторону ВС продолжили за вершину С и отметили на продолжении точку В1 так, что С – середина ВВ1 . Аналогично, продолжили сторону СА за вершину А и отметили на продолжении точку С1 так, что А – середина СС1 . Найдите площадь треугольника А1В1С1 , если площадь треугольника АВС равна1.
Докажите, что площадь треугольника, стороны которого
равны медианам треугольника площади S, равна 3S/4.
Дан треугольник ABC. Найдите все такие точки P,
что площади треугольников ABP, BCP и ACP равны.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке