ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)

Вниз   Решение


В треугольнике ABC угол при вершине B равен $ {\frac{\pi}{3}}$, а отрезки, соединяющие центр вписанной окружности с вершинами A и C, равны 4 и 6 соответственно. Найдите радиус окружности, вписанной в треугольник ABC.

ВверхВниз   Решение


Трое сумасшедших маляров принялись красить пол каждый в свой цвет. Один успел закрасить красным 75% пола, другой зелёным – 70%, третий синим – 65%. Какая часть пола заведомо закрашена всеми тремя красками?

ВверхВниз   Решение


Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



Задача 110752

Темы:   [ Построение треугольников по различным точкам ]
[ Биссектриса делит дугу пополам ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 4
Классы: 8,9,10

В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


Прислать комментарий     Решение

Задача 109499

Темы:   [ Точка Торричелли ]
[ Симметрия помогает решить задачу ]
[ Свойства биссектрис, конкуррентность ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108246

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанные и описанные окружности ]
[ Векторы помогают решить задачу ]
[ Вписанный угол равен половине центрального ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5+
Классы: 9,10,11

Автор: Сонкин М.

На стороне AB треугольника ABC выбрана точка D . Окружность, описанная около треугольника BCD , пересекает сторону AC в точке M , а окружность, описанная около треугольника ACD , пересекает сторону BC в точке N (точки M и N отличны от точки C ). Пусть O – центр описанной окружности треугольника CMN . Докажите, что прямая OD перпендикулярна стороне AB .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .