Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Положительные числа х1, ..., хk удовлетворяют неравенствам  
  а) Докажите, что  k > 50.
  б) Построить пример таких чисел для какого-нибудь k.
  в) Найти минимальное k, для которого пример возможен.

Вниз   Решение


Максимальное время работы на одном тесте: 1 секунда

На плоскости задано N векторов - направленных отрезков, для каждого из которых известны координаты начала и конца (вектор, у которого начало и конец совпадают, называется нуль-вектором, можно считать, что нуль-вектор лежит на любой прямой, которая через него проходит). Введем следующие три операции над направленными отрезками на плоскости:

1) Направленные отрезки ненулевой длины, лежащие на пересекающихся прямых, можно заменить на их сумму, причем единственным образом. В этом случае отрезки переносятся вдоль своих прямых так, чтобы их начала совпадали с точкой пересечения прямых, и складываются по правилу сложения векторов (правилу параллелограмма, при этом началом результирующего вектора является точка пересечения прямых):

2) Направленные отрезки, лежащие на одной прямой, также можно заменить на их сумму. Для этого один из отрезков (любой) нужно перенести в начало второго из них и сложить по правилу сложения векторов на прямой:

Это правило применимо и в случае, когда один из векторов, или даже оба, являются нуль-векторами.

Заметим, что если складываемые векторы противоположно направлены и имеют одну и ту же длину, то результатом их сложения является нуль-вектор.

3) В любой точке плоскости можно породить два противоположно направленных отрезка равной (в том числе и нулевой) длины:

Будем говорить, что некоторая система векторов B эквивалентна системе A, если от системы A можно перейти к B с помощью конечной последовательности перечисленных выше операций.

Требуется получить любую систему векторов, эквивалентную заданной, состоящую из минимально возможного числа векторов.

Формат входных данных

В первой строке входного файла f.in записано число N - количество заданных векторов (1 < N ≤ 1000). В каждой из следующих N строк через пробел записаны четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - целые числа, по модулю не превосходящие 1000.

Формат выходных данных

В первой строке входного файла f.out следует записать число M - количество векторов в полученной системе (1 ≤ MN). В каждой из следующих M строк через пробел должны находиться четыре числа, обозначающие координаты начала и конца каждого из векторов соответственно. Все координаты - вещественные числа, записанные с 6 цифрами после точки.

Примеры

f.in

f.out

3

1 1 1 3

3 3 3 1

5 1 7 1

1

3.000000 3.000000 5.000000 3.000000

2

2 4 5 10

-2 -4 -5 -10

1

2.000000 4.000000 2.000000 4.000000

ВверхВниз   Решение


Представить гомотетию    с центром в точке i с коэффициентом 2 в виде композиции параллельного переноса и гомотетии с центром в точке O.

ВверхВниз   Решение


Каким точкам фазовой плоскости соответствуют квадратные трёхчлены, не имеющие корней?

ВверхВниз   Решение


Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30o . Найдите радиусы сфер.

ВверхВниз   Решение


Решите уравнение $ {\frac{x^3}{\sqrt{4-x^2}}}$ + x2 - 4 = 0.

ВверхВниз   Решение


Во что перейдёт треугольник с вершинами в точках: 0,  1 – i,  1 + i  в результате преобразования  

ВверхВниз   Решение


Автор: Шноль Д.Э.

Дима увидел в музее странные часы (см. рисунок). Они отличаются от обычных часов тем, что на их циферблате нет цифр и вообще непонятно, где у часов верх; да ещё секундная, минутная и часовая стрелки имеют одинаковую длину. Какое время показывали часы?
(Стрелки А и Б на рисунке смотрят ровно на часовые отметки, а стрелка В чуть-чуть не дошла до часовой отметки.)

ВверхВниз   Решение


Автор: Митькин Д.

Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 60629

Темы:   [ Целочисленные треугольники ]
[ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9,10

В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

Прислать комментарий     Решение

Задача 56871

Тема:   [ Целочисленные треугольники ]
Сложность: 3
Классы: 8,9

Длины сторон треугольника — последовательные целые числа. Найдите эти числа, если известно, что одна из медиан перпендикулярна одной из биссектрис.
Прислать комментарий     Решение


Задача 60701

Темы:   [ Целочисленные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Пусть в прямоугольном треугольнике длины сторон выражаются целыми числами. Докажите, что
  а) длина одного из катетов кратна 3,
  б) длина одной из трёх сторон делится на 5.

Прислать комментарий     Решение

Задача 109515

Темы:   [ Целочисленные треугольники ]
[ Простые числа и их свойства ]
[ Формула Герона ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Автор: Митькин Д.

Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.

Прислать комментарий     Решение

Задача 56872

Тема:   [ Целочисленные треугольники ]
Сложность: 4
Классы: 8,9

Длины всех сторон прямоугольного треугольника являются целыми числами, причем наибольший общий делитель этих чисел равен 1. Докажите, что его катеты равны 2mn и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.



Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .