ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Калинин А.

Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.

   Решение

Задачи

Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 769]      



Задача 102406

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

Через точку C на окружности проведены касательная, а также хорда BC и хорда DC, BD = c. Расстояния от точек B и D до касательной равны b и d. Найдите площадь треугольника BCD.

Прислать комментарий     Решение


Задача 109566

Темы:   [ Касающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Калинин А.

Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.
Прислать комментарий     Решение


Задача 52716

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 8,9

В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная, отрезок которой внутри треугольника равен b.
Найдите площадь треугольника, отсечённого этой касательной.

Прислать комментарий     Решение

Задача 52816

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 4-
Классы: 8,9

В равносторонний треугольник со стороной a вписана окружность. К окружности проведена касательная так, что её отрезок внутри треугольника равен b. Найдите площадь треугольника, отсеченного этой касательной.

Прислать комментарий     Решение


Задача 52837

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4-
Классы: 8,9

На отрезке AC взята точка B, и на отрезках AB, BC и CA построены полуокружности S1, S2 и S3 по одну сторону от AC; D — точка на S3, проекция которой на AC совпадает с точкой B. Общая касательная к S1 и S2 касается этих полуокружностей в точках F и E соответственно. Докажите, что

а) прямая EF параллельна касательной к S3, проведённой через точку D;

б) BFDE — прямоугольник.

Прислать комментарий     Решение


Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .