ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Рассматриваются всевозможные квадратные трёхчлены вида x² + px + q, где p, q – целые, 1 ≤ p ≤ 1997, 1 ≤ q ≤ 1997. |
Страница: << 18 19 20 21 22 23 24 [Всего задач: 117]
Рассматриваются всевозможные квадратные трёхчлены вида x² + px + q, где p, q – целые, 1 ≤ p ≤ 1997, 1 ≤ q ≤ 1997.
Три спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?
Страница: << 18 19 20 21 22 23 24 [Всего задач: 117] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|