ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



Задача 67295

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10,11

Существует ли целое $n>1$, удовлетворяющее неравенству $$[\sqrt{n-2} + 2\sqrt{n+2}] < [\sqrt{9n+6}]?$$ (Здесь $[x]$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
Прислать комментарий     Решение


Задача 78705

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Существует ли такое число h, что ни для какого натурального числа n число  [h·1969n] не делится на [h·1969n–1]?

Прислать комментарий     Решение

Задача 109715

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Геометрическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Найдите сумму



Прислать комментарий     Решение

Задача 66474

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что для любых натуральных a1, a2, ..., ak таких, что , у уравнения не больше чем a1a2...ak решений в натуральных числах. ([x] – целая часть числа x, т. е. наибольшее целое число, не превосходящее x.)
Прислать комментарий     Решение


Задача 67053

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

Докажите для любых натуральных чисел $a_1, a_2, ..., a_n$ неравенство  $\bigg\lfloor\frac{a_1^2}{a_2}\bigg\rfloor + \bigg\lfloor\frac{a_2^2}{a_3}\bigg\rfloor + ... + \bigg\lfloor\frac{a_n^2}{a_1}\bigg\rfloor \geqslant a_1 + a_2 + ... +a_n$.  ([$x$] – целая часть числа $x$.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 54]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .