ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Участникам тестовой олимпиады было предложено n вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 398]      



Задача 73693

Темы:   [ Доказательство от противного ]
[ Обратный ход ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 7,8,9

Треугольная таблица строится по следующему правилу: в верхней её строке написано одно только натуральное число a > 1, а далее под каждым числом k слева пишем число k2 , а справа — число k + 1. Докажите, что в каждой строке таблицы все числа разные.

Например, при a = 2 вторая строка состоит из чисел 4 и 3, третья — из чисел 16, 5, 9 и 4, четвёртая — из чисел 256, 17, 25, 6, 81, 10, 16 и 5.
Прислать комментарий     Решение


Задача 109733

Темы:   [ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Системы линейных уравнений ]
[ Уравнения в целых числах ]
Сложность: 5
Классы: 9,10,11

Участникам тестовой олимпиады было предложено n вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?

Прислать комментарий     Решение

Задача 116023

Темы:   [ Признаки делимости на 3 и 9 ]
[ Доказательство от противного ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?

Прислать комментарий     Решение

Задача 98031

Темы:   [ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.

Прислать комментарий     Решение

Задача 66619

Темы:   [ Задачи на движение ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 5,6,7

Илья совершенно не любит задачи на скорость и не помнит ни одной формулы. Когда его спросили, какое расстояние проедет поезд, он попробовал и перемножить данные скорость и время, и сложить их, и даже поделить скорость на время. «У меня всегда получается одно и то же число! Наверное, это и есть правильный ответ!» — воскликнул Илья. Докажите, что выполнять арифметические действия Илья тоже не умеет.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .