ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На столе лежат 365 карточек, на обратной стороне которых написаны различные числа. За один рубль Вася может выбрать три карточки и попросить Петю положить их слева направо так, чтобы числа на карточках располагались в порядке возрастания. Может ли Вася, потратив 2000 рублей, с гарантией выложить все 365 карточек на стол слева направо так, чтобы числа на них располагались в порядке возрастания? Решение |
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 1006]
В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на k + 2 группы так, что никакие два города из одной группы не соединены авиалинией.
На столе лежат 365 карточек, на обратной стороне которых написаны различные числа. За один рубль Вася может выбрать три карточки и попросить Петю положить их слева направо так, чтобы числа на карточках располагались в порядке возрастания. Может ли Вася, потратив 2000 рублей, с гарантией выложить все 365 карточек на стол слева направо так, чтобы числа на них располагались в порядке возрастания?
Назовём компанию k-неразбиваемой, если при любом разбиении её на k групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.
Обозначим через S(n, k) количество не делящихся на k коэффициентов разложения многочлена (x + 1)n по степеням x.
Шеренга состоит из N ребят попарно различного роста. Её разбили на наименьшее возможное количество групп стоящих подряд ребят, в каждой из которых ребята стоят по возрастанию роста слева направо (возможны группы из одного человека). Потом в каждой группе переставили ребят по убыванию роста слева направо. Докажите, что после N – 1 такой операции ребята будут стоять по убыванию роста слева направо.
Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 1006] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|