ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 210]      



Задача 73635

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Разбиения на пары и группы; биекции ]
[ Теорема Виета ]
[ Комплексные числа помогают решить задачу ]
[ Алгебраические уравнения в C. Извлечение корня ]
Сложность: 5
Классы: 9,10,11

Сумма тангенсов углов величиной 1°, 5°, 9°, 13°, ..., 173°, 177° равна 45. Докажите это.
Прислать комментарий     Решение


Задача 73744

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Неравенства с углами ]
[ Неравенство Коши ]
Сложность: 5
Классы: 9,10,11

Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
  а) меньше 2 для любого остроугольного треугольника;
  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg 4/3;  а среди треугольников с тупым углом, меньшим  2 arctg 4/3,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

Прислать комментарий     Решение

Задача 109602

Темы:   [ Тригонометрические уравнения ]
[ Тригонометрические неравенства ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 5
Классы: 9,10,11

Решите уравнение cos(cos(cos(cos x)))= sin(sin(sin(sin x))) .
Прислать комментарий     Решение


Задача 109838

Темы:   [ Тригонометрические неравенства ]
[ Иррациональные неравенства ]
[ Возрастание и убывание. Исследование функций ]
[ Монотонность и ограниченность ]
Сложность: 5
Классы: 10,11

Докажите, что sin< при 0<x< .
Прислать комментарий     Решение


Задача 109860

Темы:   [ Тригонометрические неравенства ]
[ Геометрические интерпретации в алгебре ]
[ Векторы помогают решить задачу ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 5
Классы: 10,11

Для углов α , β , γ справедливо равенство sinα + sinβ + sinγ 2 . Докажите, что cosα + cosβ + cosγ .
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .