ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фомин А.

Дан набор, состоящий из таких 100 различных чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе положительно.

   Решение

Задачи

Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 1221]      



Задача 109917

Темы:   [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9,10

Автор: Фомин А.

Дан набор, состоящий из таких 100 различных чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе положительно.

Прислать комментарий     Решение

Задача 109925

Темы:   [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

Автор: Фомин А.

Дан набор, состоящий из таких 1997 чисел, что если каждое число в наборе заменить на сумму остальных, то получится тот же набор.
Докажите, что произведение чисел в наборе равно 0.

Прислать комментарий     Решение

Задача 109930

Темы:   [ Процессы и операции ]
[ Подсчет двумя способами ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4
Классы: 8,9,10

На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников.

Прислать комментарий     Решение

Задача 109955

Темы:   [ Выигрышные и проигрышные позиции ]
[ Перебор случаев ]
Сложность: 4
Классы: 7,8,9

На концах клетчатой полоски размером 1×101 клеток стоят две фишки: слева – фишка первого игрока, справа – второго. За ход разрешается сдвинуть свою фишку в направлении противоположного края полоски на 1, 2, 3 или 4 клетки. При этом разрешается перепрыгивать через фишку соперника, но запрещается ставить свою фишку на одну клетку с ней. Выигрывает тот, кто первым достигнет противоположного края полоски. Кто выиграет при правильной игре: тот, кто ходит первым, или его соперник?
Прислать комментарий     Решение


Задача 110043

Темы:   [ Числовые таблицы и их свойства ]
[ Симметрия и инволютивные преобразования ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке.

Докажите, что сумма всех чисел в таблице делится на 200.

Прислать комментарий     Решение

Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .