ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Остроугольный треугольник разбили медианой на два меньших треугольника.
Докажите, что каждый из них можно накрыть полукругом, равным половинке описанного круга исходного треугольника.

Вниз   Решение


В основании пирамиды SABCD лежит трапеция ABCD с основаниями BC и AD , причём BC=2AD . На рёбрах SA и SB взяты точки K и L , причём 2SK=KA и 3SL = LB . В каком отношении плоскость KLC делит ребро SD ?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 74]      



Задача 109164

Темы:   [ Объем помогает решить задачу ]
[ Тетраэдр (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4+
Классы: 10,11

Если через точку O , расположенную внутри треугольной пирамиды ABCD , провести отрезки AA1,BB1,CC1,DD1 , где A1 лежит на грани, противоположной вершине A , B1 – на грани, противоположной вершине B , и т.д., то имеет место равенство

A1O/A1A+B1O/B1B+C1O/C1C+D1O/D1D=1.

Прислать комментарий     Решение

Задача 87092

Темы:   [ Сфера, вписанная в пирамиду ]
[ Объем помогает решить задачу ]
[ Апофема пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

Ребро PA четырёхугольной пирамиды PABCD перпендикулярно плоскости основания ABCD . Ребро PA равно 6. Основание ABCD – квадрат со стороной 8. Точки M и N – середины отрезков AD и CD . Найдите радиус сферы, вписанной в пирамиду SDMN .
Прислать комментарий     Решение


Задача 109367

Темы:   [ Параллелепипеды (прочее) ]
[ Объем помогает решить задачу ]
Сложность: 3
Классы: 10,11

Расстояния от трёх вершин параллелепипеда до противоположных граней равны 2, 3 и 4. Полная поверхность параллелепипеда равна 36. Найдите площади граней параллелепипеда.
Прислать комментарий     Решение


Задача 110412

Темы:   [ Свойства сечений ]
[ Объем помогает решить задачу ]
Сложность: 3
Классы: 10,11

В основании пирамиды SABCD лежит трапеция ABCD с основаниями BC и AD , причём BC=2AD . На рёбрах SA и SB взяты точки K и L , причём 2SK=KA и 3SL = LB . В каком отношении плоскость KLC делит ребро SD ?
Прислать комментарий     Решение


Задача 110413

Темы:   [ Свойства сечений ]
[ Объем помогает решить задачу ]
Сложность: 3
Классы: 10,11

На рёбрах DA , DB и DC пирамиды ABCD взяты соответственно точки K , L и M , причём DK=DA , DL=DB и DM = DC , G – точка пересечения медиан треугольника ABC . В каком отношении плоскость KLM делит отрезок DG ?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .