ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



Задача 111315

Темы:   [ Объем помогает решить задачу ]
[ Объем тела равен сумме объемов его частей ]
Сложность: 3
Классы: 10,11

На грани ABC тетраэдра ABCD взята точка O и через неё проведены отрезки OA1 , OB1 и OC1 , параллельные рёбрам DA , DB и DC , до пересечения с гранями тетраэдра. Докажите, что

+ + = 1.

Прислать комментарий     Решение

Задача 87335

Темы:   [ Объем помогает решить задачу ]
[ Расстояние между скрещивающимися прямыми ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Сторона основания ABCD правильной пирамиды SABCD равна 4 , угол между боковым ребром пирамиды и плоскостью основания равен arctg . Точка M – середина ребра SD , точка K – середина ребра AD . Найдите: 1) объём пирамиды CMSK ; 2) угол между прямыми CM и SK ; 3) расстояние между прямыми CM и SK .
Прислать комментарий     Решение


Задача 109257

Темы:   [ Объем помогает решить задачу ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 4
Классы: 10,11

В треугольной пирамиде ABCD грани ABC и ABD имеют площади p и q и образуют между собой угол α . Найдите площадь сечения пирамиды плоскостью, проходящей через ребро AB и центр вписанного в пирамиду шара.
Прислать комментарий     Решение


Задача 110421

Темы:   [ Объем помогает решить задачу ]
[ Прямоугольный тетраэдр ]
[ Тетраэдр (прочее) ]
Сложность: 4
Классы: 10,11

Боковые рёбра треугольной пирамиды попарно перпендикулярны, а площади боковых граней равны S , P и Q . Найдите радиус вписанного шара. Найдите также радиус шара, касающегося основания и продолжений боковых граней пирамиды.
Прислать комментарий     Решение


Задача 110510

Темы:   [ Объем помогает решить задачу ]
[ Расстояние между скрещивающимися прямыми ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Сторона основания ABCD правильной пирамиды SABCD равна 8, высота SO равна 3. Точка M – середина ребра SB , точка K – середина ребра BC . Найдите: 1) объём пирамиды AMSK ; 2) угол между прямыми AM и SK ; 3) расстояние между прямыми AM и SK .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .