ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 74]      



Задача 111147

Темы:   [ Свойства сечений ]
[ Объем помогает решить задачу ]
Сложность: 3
Классы: 10,11

На боковых рёбрах SA , SB и SC четырёхугольной пирамиды SABCD , основание которой есть квадрат, взяты соответственно точки A1 , B1 и C1 так, что SA1:SA=3:7 , SB1:SB = 2:7 и SC1:SC = 4:9 . Плоскость, проходящая через точки A1 , B1 и C1 пересекает ребро SD в точке D1 . Найдите отношение SD1:SD и отношение объёма пирамиды SA1B1C1D1 к объёму пирамиды SABCD .
Прислать комментарий     Решение


Задача 111148

Темы:   [ Свойства сечений ]
[ Объем помогает решить задачу ]
Сложность: 3
Классы: 10,11

На боковых рёбрах SK , SL и SM четырёхугольной пирамиды SKLMN , основание KLMN которой есть квадрат, взяты соответственно точки K1 , L1 и M1 так, что SK1:SK=4:9 , SL1:SL = 1:3 и SM1:SM = 4:11 . Плоскость, проходящая через точки K1 , L1 и M1 пересекает ребро SN в точке N1 . Найдите отношение SN1:SN и отношение объёма пирамиды SK1L1M1N1 к объёму пирамиды SKLMN .
Прислать комментарий     Решение


Задача 78127

Темы:   [ Правильный тетраэдр ]
[ Объем помогает решить задачу ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 4
Классы: 11

Точка G — центр шара, вписанного в правильный тетраэдр ABCD. Прямая OG, соединяющая G с точкой O, лежащей внутри тетраэдра, пересекает плоскости граней в точках A', B', C', D'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ + $\displaystyle {\frac{OD'}{GD'}}$ = 4.

Прислать комментарий     Решение

Задача 86990

Темы:   [ Сфера, вписанная в пирамиду ]
[ Объем помогает решить задачу ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 8,9

Две грани треугольной пирамиды – равносторонние треугольники со стороной a . Две другие грани – равнобедренные прямоугольные треугольники. Найдите радиус вписанного в пирамиду шара.
Прислать комментарий     Решение


Задача 86995

Темы:   [ Касательные к сферам ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 8,9

В треугольной пирамиде PABC боковое ребро PB перпендикулярно плоскости основания ABC , PB = 6 , AB = BC = , AC = 2 . Сфера, центр O которой лежит на грани ABP , касается плоскостей остальных граней пирамиды. Найдите расстояние от центра O сферы до ребра AC .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 74]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .