ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть
В правильной треугольной пирамиде SABC ( S – вершина)
сторона основания равна 6, высота пирамиды SH равна На столе лежат несколько тонких спичек одинаковой длины. Всегда ли можно раскрасить их концы а) в 2, б) в 3 цвета так, чтобы два конца каждой спички были разных цветов, а каждые два касающихся конца (разных спичек) – одного и того же цвета? Основанием пирамиды служит треугольник со сторонами 9, 12 и 15, а её высота образует с высотами боковых граней (опущенных из той же вершины) одинаковые углы, не меньшие 60o . Какой наибольший объём может иметь такая пирамида? |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 127]
Основанием прямоугольного параллелепипеда АВСDA1B1C1D1 является квадрат АВСD.
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AB = AA1 = 12 и AD = 30 . Точка M расположена в грани ABB1A1 на расстоянии 1 от середины AB и на равных расстояниях от вершин A и B . Точка N лежит в грани DCC1D1 и расположена симметрично точке M относительно центра параллелепипеда. Найдите длину кратчайшего пути по поверхности параллелепипеда между точками M и N .
В вершине A прямоугольника ABCD со сторонами AB = a , BC = b сидит паук, а в противоположной вершине – муха. Их разделяет вертикальная стенка в виде равнобедренного треугольника BMD с основанием BD и углом α при вершине M . Найдите длину кратчайшего пути от паука к мухе, если известно, что паук может двигаться лишь по той части плоскости прямоугольника, где находится стена (включая границу прямоугольника), и по самой стене.
Основанием пирамиды служит треугольник со сторонами 5, 12 и 13, а её высота образует с высотами боковых граней (опущенных из той же вершины) одинаковые углы, не меньшие 30o . Какой наибольший объём может иметь такая пирамида?
Основанием пирамиды служит треугольник со сторонами 9, 12 и 15, а её высота образует с высотами боковых граней (опущенных из той же вершины) одинаковые углы, не меньшие 60o . Какой наибольший объём может иметь такая пирамида?
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 127]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке