Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.

Вниз   Решение


Предположим, что цепные дроби   сходятся. Согласно задаче 61330, они будут сходиться к корням многочлена  x² – px + q = 0.  С другой стороны к тем же корням будут сходиться и последовательности, построенные по методу Ньютона (см. задачу 61328):   xn+1 = xn = .  Докажите, что если x0 совпадает с нулевой подходящей дробью цепной дроби α или β, то числа x1, x2, ... также будут совпадать с подходящими дробями к α или β.

ВверхВниз   Решение


В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что  CB = BE.

ВверхВниз   Решение


Пусть многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  имеет корни  x1, x2, ..., xn,  причем  |x1| > |x2| > ... > |xn|.  В задаче  60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа     На основе этого рассуждения Лобачевский придумал метод для приближенного поиска корней многочлена P(x). Он заключается в следующем. Строится такая последовательность многочленов  P0(x), P1(x), P2(x), ...,  что  P0(x) = P(x)  и многочлен Pk(x) имеет корни     Пусть     Докажите, что

  а)  

  б)  

ВверхВниз   Решение


Докажите, что  
Числа Pkl(n) определены в задаче 61525.

ВверхВниз   Решение


Внутри отрезка АС выбрана произвольная точка В и построены окружности с диаметрами АВ и ВС. На окружностях (в одной полуплоскости относительно АС) выбраны соответственно точки M и L так, что  ∠MBA = ∠LBC.  Точки K и F отмечены соответственно на лучах ВМ и BL так, что
BK = BC  и  BF = AB. Докажите, что точки M, K, F и L лежат на одной окружности.

ВверхВниз   Решение


Докажите, что для любых комплексных чисел z, w справедливо равенство  ezew = ez+w.

ВверхВниз   Решение


Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что

ÐPBA + ÐPCA = ÐPBC + ÐPCB.

Докажите, что APAI, причём равенство выполняется тогда и только тогда, когда P совпадает с I.

Вверх   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 289]      



Задача 108172

Темы:   [ Ломаные ]
[ Неравенство треугольника (прочее) ]
[ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 8,9

Ломаная разбивает круг на две равновеликие части. Докажите, что кратчайшая такая ломаная – это диаметр.

Прислать комментарий     Решение

Задача 108474

Темы:   [ Длины сторон (неравенства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Известно, что a, b и c — длины сторон треугольника. Докажите, что

$\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3.

Прислать комментарий     Решение


Задача 108928

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника ]
Сложность: 4
Классы: 8,9

Пусть AB – наименьшая сторона остроугольного треугольника ABC . На сторонах BC и AC выбраны точки X и Y соответственно. Докажите, что длина ломаной AXYB не меньше удвоенной длины стороны AB .
Прислать комментарий     Решение


Задача 109176

Темы:   [ Отрезок, соединяющий середины ребер ]
[ Неравенство треугольника (прочее) ]
[ Длины и периметры (геометрические неравенства) ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 10,11

Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.
Прислать комментарий     Решение


Задача 110770

Темы:   [ Углы между биссектрисами ]
[ Неравенство треугольника (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

Точка I – центр вписанной окружности треугольника ABC. Внутри треугольника выбрана точка P такая, что

ÐPBA + ÐPCA = ÐPBC + ÐPCB.

Докажите, что APAI, причём равенство выполняется тогда и только тогда, когда P совпадает с I.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .