ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

С центром в вершине D квадрата ABCD построена окружность, проходящая через вершины A и C . Через середину M стороны AB проведена касательная к этой окружности, пересекающая сторону BC в точке K . Найдите отношение BK:KC .

   Решение

Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 769]      



Задача 110845

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Центр окружности, касающейся катетов AC и BC прямоугольного треугольника ABC лежит на гипотенузе AB . Найдите диаметр окружности, если он в четыре раза меньше суммы катетов, а площадь треугольника ABC равна 16.
Прислать комментарий     Решение


Задача 110858

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

С центром в вершине D квадрата ABCD построена окружность, проходящая через вершины A и C . Через середину M стороны AB проведена касательная к этой окружности, пересекающая сторону BC в точке K . Найдите отношение BK:KC .
Прислать комментарий     Решение


Задача 110862

Темы:   [ Описанные четырехугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Окружность с центром O , вписанная в равнобедренный треугольник ABC , касается боковых сторон AB и BC в точках P и Q соответственно. Докажите, что в четырёхугольник BPOQ можно вписать окружность, и найдите угол ABC , если известно, что радиус этой окружности вдвое меньше радиуса вписанной окружности треугольника ABC .
Прислать комментарий     Решение


Задача 111073

Темы:   [ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Вписанная в треугольник ABC окружность радиуса 1 касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что MKN = ABC = 45o . Найдите стороны треугольника ABC .
Прислать комментарий     Решение


Задача 111074

Темы:   [ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Вписанная в треугольник ABC окружность касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что AC=1 , а углы MKN и ABC равны соответственно 45o и 30o . Найдите радиус окружности.
Прислать комментарий     Решение


Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .