ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность с центром O , вписанная в четырёхугольник ABCD , касается сторон AB , BC , CD и AD в точках K , L , M и N соответственно. Отрезок KN делит OA пополам, отрезок KL делит OB пополам, а отрезок MN делит OD в отношении 1:3, считая от точки O . Найдите углы четырёхугольника ABCD .

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 159]      



Задача 54401

Темы:   [ Трапеции (прочее) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В трапеции ABCD длина большего основания AD равна a, BC перпендикулярно CD, AB = BC, диагональ BD перпендикулярна AB. Найдите стороны трапеции.

Прислать комментарий     Решение


Задача 65797

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанные и описанные окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Автор: Панов М.Ю.

В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CH. В треугольники ACH и BCH вписали окружности; O1 и O2 – их центры; P1 и P2 – их точки касания с AC и BC. Докажите, что прямые O1P1 и O2P2 пересекаются на AB.

Прислать комментарий     Решение

Задача 110844

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Окружность с центром на стороне AC равнобедренного треугольника ABC ( AB=BC ) касается сторон AB и BC , а сторону AC делит на три равные части. Найдите радиус окружности, если площадь треугольника ABC равна 9 .
Прислать комментарий     Решение


Задача 110855

Темы:   [ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Через вершины A , B и C трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой CD , а её центр лежит на диагонали AC . Найдите площадь трапеции ABCD , если BC=2 , AD=8 .
Прислать комментарий     Решение


Задача 110865

Темы:   [ Описанные четырехугольники ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность с центром O , вписанная в четырёхугольник ABCD , касается сторон AB , BC , CD и AD в точках K , L , M и N соответственно. Отрезок KN делит OA пополам, отрезок KL делит OB пополам, а отрезок MN делит OD в отношении 1:3, считая от точки O . Найдите углы четырёхугольника ABCD .
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .