ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность с центром на стороне AB равнобедренного треугольника ABC ( AB=BC ) проходит через точку A , пересекает отрезок AC в точке F , касается отрезка BC в точке G и пересекает отрезок AB в точке E , причём GC=BG , FC = a . Найдите радиус окружности.

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 1275]      



Задача 110876

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Окружность с центром на стороне AB равнобедренного треугольника ABC ( AB=BC ) проходит через точку A , пересекает отрезок AC в точке F , касается отрезка BC в точке G и пересекает отрезок AB в точке E , причём = -1 , FC = a . Найдите радиус окружности.
Прислать комментарий     Решение


Задача 110877

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Окружность с центром на стороне AB равнобедренного треугольника ABC ( AB=BC ) касается отрезка AC в точке F , пересекает отрезок BC в точке G , проходит через точку B и пересекает отрезок AB в точке E , причём GC = a , BFG = γ . Найдите радиус окружности.
Прислать комментарий     Решение


Задача 110878

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Окружность с центром на стороне AB равнобедренного треугольника ABC ( AB=BC ) проходит через точку A , пересекает отрезок AC в точке F , касается отрезка BC в точке G и пересекает отрезок AB в точке E , причём GC=BG , FC = a . Найдите радиус окружности.
Прислать комментарий     Решение


Задача 110972

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Биссектриса AD и высота BE остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину A , середину стороны AC и пересекает сторону AB в точке K такой, что AK:KB=1:3 . Найдите длину стороны BC .
Прислать комментарий     Решение


Задача 110974

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Биссектриса BK и высота CZ остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину B , середину стороны BC и пересекает сторону AB в точке M такой, что AM:MB=2:1 . Найдите длину стороны AC .
Прислать комментарий     Решение


Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .