ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки M и N являются серединами боковых сторон AC и CB равнобедренного треугольника ACB. Точка L расположена на медиане BM так, что |
Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 769]
В равнобедренный треугольник ABC (AB = BC) вписана окружность с центром O, которая касается стороны AB в точке E. На продолжении стороны AC за точку A выбрана точка D так, что AD = ½ AC. Докажите, что прямые DE и AO параллельны.
В прямоугольном треугольнике ABC CH – высота, проведённая к гипотенузе. Окружность с центром H и радиусом CH пересекает больший катет AC в точке M. Точка B' симметрична точке B относительно H. В точке B' восставлен перпендикуляр к гипотенузе, который пересекает окружность в точке K. Докажите, что:
Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB.
На вписанной окружности треугольника ABC, касающейся стороны AC в точке S, нашлась такая точка Q, что середины отрезков AQ и QC также лежат на вписанной окружности. Докажите, что QS – биссектриса угла AQC.
Точки M и N являются серединами боковых сторон AC и CB равнобедренного треугольника ACB. Точка L расположена на медиане BM так, что
Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|