Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В трапеции ABCD диагональ AC равна сумме оснований AB и CD . Точка M – середина стороны BC . Точка B' симметрична точке B относительно прямой AM . Докажите, что ABD = CB'D .

Вниз   Решение


Внутри неравнобедренного треугольника ABC взята такая точка O , что OBC = OCB = 20o . Кроме того BAO + OCA = 70o . Найдите угол A .

ВверхВниз   Решение


Ханойская башня и двоичная система счисления. Рассмотрим два процесса, каждый из которых состоит из 28 - 1 шагов. Первый — это процесс решения головоломки ``Ханойская башня'' (смотри задачу 1.42) при помощи оптимального алгоритма. Второй — это процесс прибавления единицы, который начинается с 0 и заканчивается числом 28 - 1. Опишите связь между этими двумя процессами.

ВверхВниз   Решение


В кубе ABCDABCD₁, ребро которого равно 4, точки E и F ─ середины рёбер AB и BC₁ соответственно, а точки P расположена на ребре CD так, что CD = 3PD. Найдите

1) расстояние от точки F до прямой AP;

2) расстояние между прямыми EF и AP;

3) расстояние от точки A до плоскости треугольника EFP.

ВверхВниз   Решение


Пусть O — центр масс системы точек, суммарная масса которой равна m. Докажите, что моменты инерции этой системы относительно точки O и произвольной точки X связаны соотношением IX = IO + mXO2.

ВверхВниз   Решение


  Числа m и n называются дружественными, если сумма собственных делителей числа m равна n и, наоборот, сумма собственных делителей числа n равна m. Другими словами, числа m и n являются дружественными, если  σ(m) – m = n  и  σ(n) – n = m.
  Докажите, что если все три числа  p = 3·2k–1 – 1,  q = 3·2k – 1  и  r = 9·22k–1 – 1  – простые, то числа  m = 2kpq  и  n = 2kr  – дружественные. Постройте примеры дружественных чисел.

ВверхВниз   Решение


Пусть  (m, n) > 1.  Что больше  τ(mn)  или  τ(m)τ(n)?  Исследуйте тот же вопрос для функции σ(n).

ВверхВниз   Решение


Автор: Фольклор

Оля и Максим оплатили путешествие по архипелагу из 2009 островов, где некоторые острова связаны двусторонними маршрутами катера. Они путешествуют, играя. Сначала Оля выбирает остров, на который они прилетают. Затем они путешествуют вместе на катерах, по очереди выбирая остров, на котором еще не были (первый раз выбирает Максим). Кто не сможет выбрать остров, проиграл. Докажите, что Оля может выиграть.

ВверхВниз   Решение


На прямой AB взяты точки P и P1, а на прямой AC взяты точки Q и Q1. Прямая, соединяющая точку A с точкой пересечения прямых PQ и P1Q1, пересекает прямую BC в точке D. Докажите, что

$\displaystyle {\frac{\overline{BD}}{\overline{CD}}}$ = $\displaystyle {\frac{(\overline{BP}/\overline{PA})-(\overline{BP_1}/
\overline{P_1A})}{(\overline{CQ}/\overline{QA})-(\overline{CQ_1}/\overline{Q_1A})}}$.

ВверхВниз   Решение


В остроугольный треугольник ABC помещены две касающиеся окружности. Одна из них касается сторон AC и BC , а вторая — сторон AB и BC . Докажите, что сумма их радиусов больше радиуса окружности, вписанной в треугольник ABC .

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды SABCD ( S – вершина) равна 4. Точки E и F расположены на рёбрах CB и AD соответственно, причём CE=3 , AF=2 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой F , центр основания лежит на прямой SD , а отрезок EF является одной из образующих. Найдите объём этого конуса.

Вверх   Решение

Задачи

Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 696]      



Задача 110526

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Описанные четырехугольники ]
[ Двугранный угол ]
Сложность: 4
Классы: 10,11

Сфера касается боковых граней четырёхугольной пирамиды SABCD в точках, лежащих на рёбрах AB , BC , CD , DA . Известно, что высота пирамиды равна , AB=8 , SA=4 , SB=8 , SC=4 . Найдите длины рёбер BC и CD , радиус сферы и двугранный угол при ребре SD .
Прислать комментарий     Решение


Задача 110527

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Описанные четырехугольники ]
[ Двугранный угол ]
Сложность: 4
Классы: 10,11

Сфера касается боковых граней четырёхугольной пирамиды SABCD в точках, лежащих на рёбрах AB , BC , CD , DA . Известно, что высота пирамиды равна , AB=12 , SA=5 , SB=11 , SC= . Найдите длины рёбер BC и CD , радиус сферы и двугранный угол при ребре SD .
Прислать комментарий     Решение


Задача 110528

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Описанные четырехугольники ]
[ Двугранный угол ]
Сложность: 4
Классы: 10,11

Сфера касается боковых граней четырёхугольной пирамиды SABCD в точках, лежащих на рёбрах AB , BC , CD , DA . Известно, что высота пирамиды равна 2 , AB=9 , SA=6 , SB=9 , SC=2 . Найдите длины рёбер BC и CD , радиус сферы и двугранный угол при ребре SD .
Прислать комментарий     Решение


Задача 110909

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды SABCD ( S – вершина) равна 10. Точки E и F расположены на рёбрах DC и BC соответственно, причём CE=6 , CF=9 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой E , центр основания лежит на прямой SA , а отрезок EF является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Задача 110910

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной треугольной пирамиды SABC ( S – вершина) равна 8. Точки K и L расположены на рёбрах AB и AC соответственно, причём AK=7 , AL=4 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой K , центр основания лежит на прямой SC , а отрезок KL является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 696]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .