ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано изображение призмы ABCA1B1C1 . Постройте изображение точки M пересечения плоскостей A1BC , AB1C и ABC1 . Пусть высота призмы равна h . Найдите расстояние от точки M до оснований призмы.

   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 20]      



Задача 109345

Темы:   [ Ортогональная проекция (прочее) ]
[ Цилиндр ]
[ Призма (прочее) ]
Сложность: 3
Классы: 10,11

Вершины A и B призмы ABCA1B1C1 лежат на оси цилиндра, а остальные вершины – на боковой поверхности цилиндра. Найдите в этой призме двугранный угол с ребром AB .
Прислать комментарий     Решение


Задача 111127

Темы:   [ Построение сечений ]
[ Тетраэдр (прочее) ]
[ Призма (прочее) ]
Сложность: 3
Классы: 10,11

Через точку на ребре треугольной пирамиды проведены две плоскости, параллельные двум граням пирамиды. Эти плоскости отсекают две треугольные пирамиды. Разрежьте оставшийся многогранник на две треугольные призмы.
Прислать комментарий     Решение


Задача 111135

Темы:   [ Построения на проекционном чертеже ]
[ Параллельное проектирование ]
[ Призма (прочее) ]
Сложность: 3
Классы: 10,11

Дано изображение призмы ABCA1B1C1 . Постройте изображение точки M пересечения плоскостей A1BC , AB1C и ABC1 . Пусть высота призмы равна h . Найдите расстояние от точки M до оснований призмы.
Прислать комментарий     Решение


Задача 37002

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Признаки и свойства параллелограмма ]
[ Призма (прочее) ]
Сложность: 3+
Классы: 10,11

Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине?

Прислать комментарий     Решение

Задача 109197

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площадь сечения ]
[ Объем помогает решить задачу ]
[ Призма (прочее) ]
[ Пирамида (прочее) ]
Сложность: 4-
Классы: 10,11

Можно ли разбить какую-нибудь призму на непересекающиеся пирамиды, у каждой из которых основание лежит на одном из оснований призмы, а противоположная вершина – на другом основании призмы?

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .