ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На боковых рёбрах SK , SL и SM четырёхугольной пирамиды SKLMN , основание KLMN которой есть квадрат, взяты соответственно точки K1 , L1 и M1 так, что SK1:SK=4:9 , SL1:SL = 1:3 и SM1:SM = 4:11 . Плоскость, проходящая через точки K1 , L1 и M1 пересекает ребро SN в точке N1 . Найдите отношение SN1:SN и отношение объёма пирамиды SK1L1M1N1 к объёму пирамиды SKLMN . Решение |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 337]
Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника
Оклейте куб в один слой пятью равновеликими выпуклыми пятиугольниками.
Пусть M и N – точки пересечения медиан граней ABD и BCD тетраэдра ABCD. Найдите MN, если известно, что AC = a.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 337] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|