ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем , б) не меньше, чем , в) не меньше, чем ?

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 [Всего задач: 64]      



Задача 109514

Темы:   [ Объем параллелепипеда ]
[ Боковая поверхность тетраэдра и пирамиды ]
[ Площадь и ортогональная проекция ]
[ Площадь сечения ]
[ Отношение объемов ]
Сложность: 7-
Классы: 10,11

Докажите, что если два прямоугольных параллелепипеда имеют равные объемы, то их можно расположить в пространстве так, что любая горизонтальная плоскость, пересекающая один из них, будет пересекать и второй, причем по многоугольнику той же площади.
Прислать комментарий     Решение


Задача 65357

Темы:   [ Непрерывное распределение ]
[ Тетраэдр (прочее) ]
[ Признаки перпендикулярности ]
[ Площадь и ортогональная проекция ]
Сложность: 4-
Классы: 10,11

Башня в замке короля Артура увенчана крышей, которая представляет собой треугольную пирамиду, у которой все плоские углы при вершине – прямые. Три ската крыши покрашены в разные цвета. Красный скат крыши наклонён к горизонтали под углом α, а синий – под углом β. Найдите вероятность того, что дождевая капля, вертикально упавшая на крышу в случайном месте, упала на зелёный скат.

Прислать комментарий     Решение

Задача 111206

Темы:   [ Площадь сечения ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Средняя линия треугольника ]
[ Площадь и ортогональная проекция ]
[ Симметрия относительно плоскости ]
[ Площадь трапеции ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 10,11

Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA.

Прислать комментарий     Решение

Задача 111351

Темы:   [ Группы движений (самосовмещений) правильных многогранников ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Медиана пирамиды (тетраэдра) ]
[ Площадь и ортогональная проекция ]
[ Неравенства с площадями ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Гомотетия помогает решить задачу ]
Сложность: 7-
Классы: 10,11

Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем , б) не меньше, чем , в) не меньше, чем ?

Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .