ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основанием прямой призмы ABCDA1B1C1D1 служит равнобедренная трапеция ABCD , в которой AD || BC , AD:BC=n>1 . Параллельно диагонали B1D проведены плоскость через ребро AA1 и плоскость через ребро BC ; параллельно диагонали A1C проведены плоскость через ребро DD1 и плоскость через ребро B1C1 . Найдите отношение объёма треугольной пирамиды, ограниченной этими четырьмя плоскостями, к объёму призмы.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 132]      



Задача 111288

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCABC₁ ─ равнобедренный треугольник ABC, в котором AC = CB = 2, ∠ACB = 2 arcsin ⁴⁄₅. Плоскость, перпендикулярная прямой AB, пересекает рёбра AB и AB₁ в точках K и L соответственно, причём AK = ⁷⁄₁₆AB, LB₁ = ⁷⁄₁₆AB₁. Найдите площадь сечения призмы этой плоскостью.
Прислать комментарий     Решение


Задача 111289

Темы:   [ Свойства сечений ]
[ Прямая призма ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCDABCD₁ ─ равнобедренная трапеция ABCD, в которой BC ∥ AD, BC = 5, AD = 10, ∠BAD = arctg 2. Плоскость, перпендикулярная прямой AD, пересекает рёбра AD и AD₁ в точках M и N соответственно, причём MD = AN = 1. Найдите периметр сечения призмы этой плоскостью.
Прислать комментарий     Решение


Задача 111397

Темы:   [ Отношение объемов ]
[ Прямая призма ]
[ Тетраэдр и пирамида ]
Сложность: 4
Классы: 10,11

Основанием прямой призмы ABCDA1B1C1D1 служит равнобедренная трапеция ABCD , в которой AD || BC , AD:BC=n>1 . Параллельно диагонали B1D проведены плоскость через ребро AA1 и плоскость через ребро BC ; параллельно диагонали A1C проведены плоскость через ребро DD1 и плоскость через ребро B1C1 . Найдите отношение объёма треугольной пирамиды, ограниченной этими четырьмя плоскостями, к объёму призмы.
Прислать комментарий     Решение


Задача 111398

Темы:   [ Отношение объемов ]
[ Прямая призма ]
[ Тетраэдр и пирамида ]
Сложность: 4
Классы: 10,11

Основанием призмы ABCDA1B1C1D1 служит трапеция ABCD , в которой AB || CD , CD:AB=n<1 . Диагональ AC1 пересекает диагонали A1C и D1B соответственно в точках M и N , а диагональ DB1 пересекает диагонали A1C и D1B соответственно в точках Q и P . Известно, что MNPQ – правильный тетраэдр. Найдите отношение объёма тетраэдра к объёму призмы.
Прислать комментарий     Решение


Задача 111403

Темы:   [ Правильный тетраэдр ]
[ Правильная призма ]
Сложность: 4
Классы: 10,11

Сторона основания правильной треугольной призмы ABCA1B1C1 равна 3, а высота равна 4 . Вершина правильного тетраэдра лежит на отрезке, соединяющем центры граней ABC и A1B1C1 . Плоскость основания этого тетраэдра совпадает с плоскостью основания ABC призмы, а плоскость одной из боковых граней тетраэдра проходит через диагональ AB1 боковой грани призмы. Найдите длину ребра тетраэдра.
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .