Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

На сторонах AB, BC, CD и DA выпуклого четырехугольника ABCD взяты точки K, L, M и N соответственно, причем AK : KB = DM : MC = $ \alpha$ и  BL : LC = AN : ND = $ \beta$. Пусть P — точка пересечения отрезков KM и LN. Докажите, что NP : PL = $ \alpha$ и  KP : PM = $ \beta$.

Вниз   Решение


Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Внутри цилиндра лежат два шара радиуса r и один шар радиуса 2r так, что каждый шар касается двух других, верхнего основания цилиндра и его боковой поверхности. Найдите радиус основания цилиндра.

ВверхВниз   Решение


В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на гипотенузу, а точка L делит отрезок HC пополам. Найдите угол LBC, если известно, что AH = $ {\frac{2}{\sqrt{5}}}$, а BL = 3

ВверхВниз   Решение


Решите ребус:  АХ×УХ = 2001.

ВверхВниз   Решение


Решите ребус:  БАО×БА×Б = 2002.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Докажите, что площадь одного из треугольников  AB1C1, A1BC1, A1B1C не превосходит:
а) SABC/4;
б)  SA1B1C1.

ВверхВниз   Решение


Три шара, среди которых имеется два одинаковых, касаются плоскости P и, кроме того, попарно касаются друг друга. Вершина прямого кругового конуса принадлежит плоскости P , а ось конуса перпендикулярна к этой плоскости. Все три шара лежат вне конуса, причем каждый из них касается некоторой образующей конуса. Найдите косинус угла между образующей конуса и плоскостью P , если известно, что в треугольнике с вершинами в точках касания шаров с плоскостью P величина одного из углов равна 150o .

ВверхВниз   Решение


Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


Докажите, что если в треугольной пирамиде сумма длин противоположных рёбер одна и та же для любой пары таких рёбер, то вершины этой пирамиды являются центрами четырёх шаров, попарно касающихся друг друга.

ВверхВниз   Решение


Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наибольшее количество ягод может съесть лиса?

ВверхВниз   Решение


Автор: Джукич Д.

Найдите все такие нечётные натуральные  n > 1,  что для любых взаимно простых делителей a и b числа n число  a + b – 1  также является делителем n.

ВверхВниз   Решение


В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CD . Проекция отрезка BD на катет BC равна l , а проекция отрезка AD на катет AC равна m . Найдите гипотенузу AB .

ВверхВниз   Решение


Даны 10 чисел:  а1 < а2 < ... < а10.  Сравните среднее арифметическое этих чисел со средним арифметическим первых шести чисел.

ВверхВниз   Решение


Пусть ABCD и  A1B1C1D1 — два выпуклых четырехугольника с соответственно равными сторонами. Докажите, что если  $ \angle$A > $ \angle$A1, то  $ \angle$B < $ \angle$B1,$ \angle$C > $ \angle$C1,$ \angle$D < $ \angle$D1.

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a . На ребре AB как на диаметре построена сфера. Найдите радиус шара, вписанного в трёхгранный угол тетраэдра с вершиной в точке A и касающегося построенной сферы.

ВверхВниз   Решение


Три шара касаются плоскости P в точках B1 , B2 , B3 и, кроме того, попарно касаются друг друга. Радиусы двух из них одинаковы и равны , а радиус третьего шара больше. Вершина конуса находится между плоскостью P и плоскостью основания. Все три шара лежат вне конуса, причем каждый из них касается его некоторой образующей. Угол между основанием конуса и его образующей равен arctg . Найдите расстояние от вершины конуса до плоскости P , если известно, что в треугольнике B1B2B3 имеется пара сторон, отношение которых равно .

ВверхВниз   Решение


Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

ВверхВниз   Решение


В конце четверти Вовочка выписал подряд в строчку свои текущие отметки по пению и поставил между некоторыми из них знак умножения. Произведение получившихся чисел оказалось равным 2007. Какая отметка выходит у Вовочки в четверти по пению? ("Колов" учительница пения не ставит.)

ВверхВниз   Решение


В треугольнике ABC известно, что AB=a , BC=b . Продолжение медианы BD пересекается с описанной около ABC окружностью в точке E , причём = . Найдите AC .

Вверх   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1331]      



Задача 111443

Темы:   [ Теорема косинусов ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3
Классы: 8,9

В параллелограмме отношение сторон и отношение диагоналей одинаковы и равны . Из вершины тупого угла A опущна высота AE на большую сторону CD . Найдите отношение .
Прислать комментарий     Решение


Задача 111479

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что AB=a , BC=b . Продолжение медианы BD пересекается с описанной около ABC окружностью в точке E , причём = . Найдите AC .
Прислать комментарий     Решение


Задача 111483

Темы:   [ Теорема синусов ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

В окружность радиуса 3 вписана равнобедренная трапеция с углом 45o при основании и высотой . Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 111508

Темы:   [ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

В треугольнике ABC угол A равен α,  AB = AC = b.  Через вершину B и центр описанной окружности проведена прямая до пересечения с прямой AC в точке D. Найдите BD.

Прислать комментарий     Решение

Задача 111525

Темы:   [ Теорема синусов ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

Через вершину A правильного треугольника ABC под углом α ( 0<α< ) к AC проведена прямая, пересекающая BC в точке D . Найдите отношение площади треугольника ADC к площади треугольника ABC .
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1331]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .