ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале  (0, 1)?

Вниз   Решение


Основанием прямого параллелепипеда ABCDA1B1C1D1 является квадрат ABCD со стороной 4, а длина каждого бокового ребра AA1 , BB1 , CC1 , DD1 равна 6. Прямой круговой цилиндр расположен так, что его ось лежит в плоскости BB1D1D , а точки A1 , C1 , B1 и центр O квадрата ABCD лежат на боковой поверхности цилиндра. Найдите радиус цилиндра (найдите все решения).

ВверхВниз   Решение


В шестиугольнике $A_1A_2A_3A_4A_5A_6$ никакие четыре вершины не лежат на одной окружности, а диагонали $A_1A_4$, $A_2A_5$ и $A_3A_6$ пересекаются в одной точке. Обозначим через $l_i$ радикальную ось окружностей $A_iA_{i+1}A_{i-2}$ и $A_iA_{i-1}A_{i+2}$ (мы считаем, что точки $A_i$ и $A_{i+6}$ совпадают). Докажите, что прямые $l_i$, $i=1,\ldots,6$, пересекаются в одной точке.

ВверхВниз   Решение


Стороны треугольника равны 1 и 2, а угол между ними равен 60o. Через центр вписанной окружности этого треугольника и концы третьей стороны проведена окружность. Найдите её радиус.

ВверхВниз   Решение


Дайте геометрическую интерпретацию следующих неравенств:
  а)  |z + w| ≤ |z| + |w|;   б)  |z – w| ≥ ||z| – |w||;   в)  |z – 1| ≤ |arg z|,  если  |z| = 1.

ВверхВниз   Решение


Автор: Ивлев Ф.

Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?

ВверхВниз   Решение


В произвольном (выпуклом — прим. ред.) шестиугольнике соединены через одну середины сторон. Докажите, что точки пересечения медиан двух образовавшихся треугольников совпадают.

ВверхВниз   Решение


Основанием прямого параллелепипеда ABCDA1B1C1D1 является квадрат ABCD со стороной 1. Длина каждого из боковых рёбер AA1 , BB1 , CC1 , DD1 равна . Прямой круговой цилиндр расположен так, что точки A , A1 , D лежат на его боковой поверхности, а ось цилиндра параллельна диагонали BD1 параллелепипеда. Найдите радиус цилиндра.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 75]      



Задача 111136

Темы:   [ Прямоугольные параллелепипеды ]
[ Свойства сечений ]
Сложность: 4
Классы: 10,11

Измерения прямоугольного параллелепипеда равны a , b и c ( a < b < c) . Некоторое его сечение является квадратом. Найдите сторону этого квадрата.
Прислать комментарий     Решение


Задача 111590

Темы:   [ Прямоугольные параллелепипеды ]
[ Цилиндр ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

Основанием прямого параллелепипеда ABCDA1B1C1D1 является квадрат ABCD со стороной 4, а длина каждого бокового ребра AA1 , BB1 , CC1 , DD1 равна 6. Прямой круговой цилиндр расположен так, что его ось лежит в плоскости BB1D1D , а точки A1 , C1 , B1 и центр O квадрата ABCD лежат на боковой поверхности цилиндра. Найдите радиус цилиндра (найдите все решения).
Прислать комментарий     Решение


Задача 111593

Темы:   [ Прямоугольные параллелепипеды ]
[ Цилиндр ]
Сложность: 4
Классы: 10,11

Основанием прямого параллелепипеда ABCDA1B1C1D1 является квадрат ABCD со стороной 1. Длина каждого из боковых рёбер AA1 , BB1 , CC1 , DD1 равна . Прямой круговой цилиндр расположен так, что точки A , A1 , D лежат на его боковой поверхности, а ось цилиндра параллельна диагонали BD1 параллелепипеда. Найдите радиус цилиндра.
Прислать комментарий     Решение


Задача 116318

Темы:   [ Прямоугольные параллелепипеды ]
[ Сфера, вписанная в двугранный угол ]
Сложность: 4
Классы: 10,11

Точка O расположена в сечении AA'C'C прямоугольного параллелепипеда ABCDA'B'C'D' размером 2× 6× 9 так, что OAB + OAD + OAA' = 180o . Сфера с центром в точке O касается плоскостей A'B'C' , AA'B и не имеет общих точек с плоскостью AA'D . Найдите расстояние от точки O до этой плоскости.
Прислать комментарий     Решение


Задача 116319

Темы:   [ Прямоугольные параллелепипеды ]
[ Сфера, вписанная в двугранный угол ]
Сложность: 4
Классы: 10,11

Точка O расположена в сечении ACC'A' прямоугольного параллелепипеда ABCDA'B'C'D' размером 2× 3× 6 так, что OCB + OCD + OCC' = 180o . Сфера с центром в точке O касается плоскостей A'B'C' , CC'D и не имеет общих точек с плоскостью BB'C . Найдите расстояние от точки O до этой плоскости.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .