ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне AB четырёхугольника ABCD взяты точки A1 и B1, а на стороне CD – точки C1 и D1, причём AA1 = BB1 = pAB и CC1 = DD1 = pCD, где |
Страница: << 131 132 133 134 135 136 137 >> [Всего задач: 829]
В выпуклом четырёхугольнике ABCD на сторонах AB и BC нашлись такие точки K и L соответственно, что ∠ADK = ∠CDL. Отрезки AL и CK пересекаются в точке P. Докажите, что ∠ADP = ∠BDC.
Точка O – основание высоты четырёхугольной пирамиды. Сфера с центром O касается всех боковых граней пирамиды. Точки A, B, C и D взяты последовательно по одной на боковых ребрах пирамиды так, что отрезки AB, BC и CD проходят через три точки касания сферы с гранями.
На стороне AB четырёхугольника ABCD взяты точки A1 и B1, а на стороне CD – точки C1 и D1, причём AA1 = BB1 = pAB и CC1 = DD1 = pCD, где
Дана трапеция ABCD с основаниями AD = a и BC = b. Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Найдите MN, если известно, что площади треугольников AMO и CNO равны.
Страница: << 131 132 133 134 135 136 137 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|