ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Равные треугольники. Признаки равенства
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана окружность и точка O на ней. Вторая окружность с центром O пересекает первую в точках P и Q. Точка C лежит на первой окружности, а прямые CP, CQ вторично пересекают вторую окружность в точках A и B. Докажите, что AB = PQ. Решение |
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 352]
Дана окружность и точка O на ней. Вторая окружность с центром O пересекает первую в точках P и Q. Точка C лежит на первой окружности, а прямые CP, CQ вторично пересекают вторую окружность в точках A и B. Докажите, что AB = PQ.
В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.
Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём AB = CD = EF = R. Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.
В призму ABCA'B'C' вписана сфера, касающаяся боковых граней BCC'B', CAA'C, ABB'A' в точках A0, B0, C0 соответственно. При этом
Точки A1, B1 и C1 симметричны центру описанной окружности треугольника ABC относительно его сторон.
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 352] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|