Версия для печати
Убрать все задачи
Пусть окружность, вписанная в треугольник
ABC , касается
его сторон
AB ,
BC и
AC в точках
K ,
L и
M
соответственно. К окружностям, вписанным в треугольники
BKL ,
CLM и
AKM проведены попарно общие внешние
касательные, отличные от сторон треугольника
ABC .
Докажите, что эти касательные пересекаются в одной точке.

Решение
Петя вырезал из бумаги три одинаковые фигурки, положил их друг на друга так, чтобы их края совпали, и проткнул все три фигурки насквозь. Потом из этих трёх фигурок (возможно, поворачивая или переворачивая их) он сложил большую фигуру, как на рисунке.

Одна из дырок на рисунке отмечена чёрным кружком – выберите ещё две клетки, в которых окажутся дырки.


Решение
Прямая, соединяющая центр описанной окружности и точку
пересечения высот неравнобедренного треугольника, параллельна
биссектрисе одного из его углов. Чему равен этот угол?

Решение