Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя придумал 1004 приведённых квадратных трёхчлена  f1, ...,  f1004,  среди корней которых встречаются все целые числа от 0 до 2007. Вася рассматривает всевозможные уравнения  fi = fj  (i ≠ j),  и за каждый найденный у них корень Петя платит Васе по рублю. Каков наименьший возможный доход Васи?

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 970]      



Задача 109676

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 8,9,10

Угол, образованный лучами  y = x  и  y = 2x  при  x ≥ 0,  высекает на параболе  y = x² + px + q  две дуги. Эти дуги спроектированы на ось Ox. Докажите, что проекция левой дуги на 1 короче проекции правой.

Прислать комментарий     Решение

Задача 109892

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9

Найдите все такие пары квадратных трёхчленов  x² + ax + bx² + cx + d,  что a и b – корни второго трёхчлена, c и d – корни первого.

Прислать комментарий     Решение

Задача 110089

Темы:   [ Многочлен нечетной степени имеет действительный корень ]
[ Итерации ]
[ Соображения непрерывности ]
Сложность: 3+
Классы: 9,10,11

Пусть P(x) – многочлен нечётной степени. Докажите, что уравнение  P(P(x)) = 0  имеет не меньше различных действительных корней, чем уравнение  P(x) = 0.

Прислать комментарий     Решение

Задача 111778

Темы:   [ Квадратный трехчлен (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Петя придумал 1004 приведённых квадратных трёхчлена  f1, ...,  f1004,  среди корней которых встречаются все целые числа от 0 до 2007. Вася рассматривает всевозможные уравнения  fi = fj  (i ≠ j),  и за каждый найденный у них корень Петя платит Васе по рублю. Каков наименьший возможный доход Васи?

Прислать комментарий     Решение

Задача 111810

Тема:   [ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9

Числа a, b, c таковы, что  a²(b + c) = b²(a + c) = 2008  и  a ≠ b.  Найдите значение выражения  c²(a + b).

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 970]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .