ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вписанная окружность треугольника ABC касается сторон BC, AC, AB в точках A1, B1, C1 соответственно. Отрезок AA1 вторично пересекает вписанную окружность в точке Q. Прямая l параллельна BC и проходит через A. Прямые A1C1 и A1B1 пересекают l в точках P и R соответственно. Докажите, что ∠PQR = ∠B1QC1. Решение |
Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 829]
Даны треугольник ABC и ромб BDEF, все вершины которого лежат на
сторонах треугольника ABC, а угол при вершине E – тупой.
На продолжении стороны BC ромба ABCD за точку B взята точка M так, что угол MDC – тупой. Отрезки AB и DM пересекаются в точке N.
Даны треугольник ABC с тупым углом при вершине A и ромб CDEF, все вершины которого лежат на сторонах треугольника ABC.
Из точки M окружности, описанной около прямоугольника ABCD, опустили перпендикуляры MQ и MP на две его противоположные стороны и перпендикуляры MR и MT на продолжения двух других сторон. Докажите, что прямые PR и QT перпендикулярны, а точка их пересечения принадлежит диагонали прямоугольника ABCD.
Вписанная окружность треугольника ABC касается сторон BC, AC, AB в точках A1, B1, C1 соответственно. Отрезок AA1 вторично пересекает вписанную окружность в точке Q. Прямая l параллельна BC и проходит через A. Прямые A1C1 и A1B1 пересекают l в точках P и R соответственно. Докажите, что ∠PQR = ∠B1QC1.
Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|