ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В стране есть N городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого k  (2 ≤ k ≤ N)  при любом выборе k городов количество авиалиний между этими городами не будет превосходить  2k – 2.  Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 67]      



Задача 109805

Темы:   [ Связность и разложение на связные компоненты ]
[ Ориентированные графы ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 5
Классы: 9,10,11

В стране 1001 город, каждые два города соединены дорогой с односторонним движением. Из каждого города выходит ровно 500 дорог, в каждый город входит ровно 500 дорог. От страны отделилась независимая республика, в которую вошли 668 городов. Докажите, что из каждого города этой республики можно доехать до любого другого ее города, не выезжая за пределы республики.

Прислать комментарий     Решение

Задача 111833

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Перестройки ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 9,10,11

В стране есть N городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого k  (2 ≤ k ≤ N)  при любом выборе k городов количество авиалиний между этими городами не будет превосходить  2k – 2.  Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.

Прислать комментарий     Решение

Задача 110030

Темы:   [ Связность и разложение на связные компоненты ]
[ Вспомогательная раскраска (прочее) ]
[ Индукция (прочее) ]
Сложность: 5+
Классы: 8,9,10

В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на  N + 2  республики так, чтобы никакие два города из одной республики не были соединены дорогой.

Прислать комментарий     Решение

Задача 109778

Темы:   [ Связность и разложение на связные компоненты ]
[ Обход графов ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Перебор случаев ]
Сложность: 5+
Классы: 9,10,11

Автор: Иванов И.

В стране 100 городов, некоторые пары городов соединены дорогами. Для каждых четырёх городов существуют хотя бы две дороги между ними. Известно, что не существует маршрута, проходящего по каждому городу ровно один раз. Докажите, что можно выбрать два города таким образом, чтобы каждый из оставшихся городов был соединен дорогой хотя бы с одним из двух выбранных городов.

Прислать комментарий     Решение

Задача 31355

Темы:   [ Обратный ход ]
[ Связность и разложение на связные компоненты ]
[ Ориентированные графы ]
Сложность: 3
Классы: 5,6,7,8

В 15-этажном доме имеется лифт с двумя кнопками: "+7" и "–9" (см. задачу 31354). Можно ли проехать с 3-го этажа на 12-й?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 67]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .