ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что AQ ⊥ OP. Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что OM = ON. Решение |
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 769]
Окружность S1 вписана в угол A треугольника ABC; окружность S2 вписана в угол B и касается S1 (внешним образом); окружность S3 вписана в угол C и касается S2; окружность S4 вписана в угол A и касается S3 и т. д. Докажите, что окружность S7 совпадает с S1.
В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть BC = DE. Докажите, что AB = EF.
В треугольник ABC вписана окружность, касающаяся сторон AB, AC и BC в точках C1, B1 и A1 соответственно. Пусть K – точка на окружности, диаметрально противоположная точке C1, D – точка пересечения прямых B1C1 и A1K. Докажите, что CD = CB1.
Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что AQ ⊥ OP. Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что OM = ON.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|