ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано целое число  n > 1.  Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по n точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 165]      



Задача 79253

Тема:   [ Теория игр (прочее) ]
Сложность: 4+
Классы: 8

В центре квадрата находится полицейский, а в одной из его вершин — гангстер. Полицейский может бегать по всему квадрату, а гангстер — только по его сторонам. Известно, что максимальная скорость полицейского вдвое меньше максимальной скорости гангстера. Доказать, что полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером.
Прислать комментарий     Решение


Задача 78721

Темы:   [ Теория игр (прочее) ]
[ Полуинварианты ]
Сложность: 5-
Классы: 8,9,10

Два мудреца играют в следующую игру. Выписаны числа 0, 1, 2,..., 1024. Первый мудрец зачёркивает 512 чисел (по своему выбору), второй зачёркивает 256 из оставшихся, затем снова первый зачёркивает 128 чисел и т.д. На десятом шаге второй мудрец зачёркивает одно число; остаются два числа. После этого второй мудрец платит первому разницу между этими числами. Как выгоднее играть первому мудрецу? Как второму? Сколько уплатит второй мудрец первому, если оба будут играть наилучшим образом? (Ср. с задачей 78710 и с задачей 78716.)
Прислать комментарий     Решение


Задача 109706

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 7,8,9

В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо один, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 111916

Темы:   [ Теория игр (прочее) ]
[ Правильные многоугольники ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 9,10,11

Дано целое число  n > 1.  Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по n точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?

Прислать комментарий     Решение

Задача 116833

Темы:   [ Теория игр (прочее) ]
[ Десятичная система счисления ]
Сложность: 5-
Классы: 8,9

Автор: Сафин С.

Петя и Вася играют в следующую игру. Петя загадывает натуральное число x с суммой цифр 2012. За один ход Вася выбирает любое натуральное число a и узнаёт у Пети сумму цифр числа  |x – a|.  Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить x?

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 165]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .